当前位置: 动力学知识库 > 问答 > 答案大全 >

如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.(Ⅰ)请写出图中一对全等的三

问题描述:

如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.
(Ⅰ)请写出图中一对全等的三角形________(写出一对即可).
(Ⅱ)有下列结论:
①BG=GC;②AG∥CF;③S△FGC=3;④图中与∠AGB相等的角有5个.
其中,正确结论的序号是________(把你认为正确结论的序号都填上).

网友答案:
Rt△ADE≌Rt△AFE    ①②
解析分析:(Ⅰ)根据翻折的性质可得AF=AD,∠AFE=90°,然后利用“HL”证明Rt△ADE和Rt△AFE全等(或Rt△ABG和Rt△AFG全等);
(Ⅱ)先求出DE、CE的长,从而得到EF,设BG=x,然后表示出GF,再求出CG、EG的长,然后在Rt△CEG中,利用勾股定理列式求出x的值,从而得到BG=CG,判定①正确;再根据等边对等角的性质得到∠GCF=∠GFC,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠GCF+∠GFC=∠AGB+∠AGF,从而求出∠GCF=∠AGB,根据同位角相等,两直线平行即可证明AG∥CF,判定②正确;先求出△CEG的面积,再根据等高的三角形的面积的比等于底边的比求出△FGC的面积为3.6,判定③错误;找出与∠AGB相等的角只有4个,判定④错误.

解答:(Ⅰ)∵△ADE沿AE对折至△AFE,
∴AF=AD,∠AFE=90°,
∵四边形ABCD是正方形,
∴AB=AF,
在Rt△ADE和Rt△AFE中,

∴Rt△ADE≌Rt△AFE(HL),
[或在Rt△ABG和Rt△AFG中,

∴Rt△ABG≌Rt△AFG(HL);](Ⅱ)∵CD=3DE,正方形ABCD的边长AB=6,
∴DE=×6=2,CE=CD-DE=6-2=4,
∴EF=DE=2,
∵Rt△ABG≌Rt△AFG,
∴设FG=BG=x,
则EG=x+2,CG=BC-BG=6-x,
在Rt△CEG中,EG2=CG2+CE2,
即(x+2)2=(6-x)2+42,
整理得,16x=48,
解得x=3,
∴CG=6-x=6-3=3,
∴BG=CG,故①正确;
∵FG=CG=3,
∴∠GCF=∠GFC,
又∵Rt△ABG≌Rt△AFG,
∴∠AGB=∠AGF,
根据三角形的外角性质,∠GCF+∠GFC=∠AGB+∠AGF,
∴∠GCF=∠AGB,
∴AG∥CF,故②正确;
△CEG的面积=CE?CG=×4×3=6,
∵EF=2,FG=3,
∴S△FGC=×6=3.6,故③错误;
与∠AGB相等的角有∠AGF、∠GCF、∠GFC、∠GAD共4个,故④错误;
综上所述,正确的结论有①②.
分享给朋友:
您可能感兴趣的文章:
随机阅读: