当前位置: 动力学知识库 > 问答 > 答案大全 >

如图,AD是△ABC外角∠EAC的平分线,交BC的延长线于点D.延长DA交△ABC的外接圆于点F.(1)求证:FB=FC;(2)若FA=2,AD=4,求FB的长.

问题描述:

如图,AD是△ABC外角∠EAC的平分线,交BC的延长线于点D.延长DA交△ABC的外接圆于点F.
(1)求证:FB=FC;
(2)若FA=2,AD=4,求FB的长.

网友答案:
(1)证明:∵A、C、B、F四点共圆
∴∠FBC=∠DAC
又∵AD平分∠EAC
∴∠EAD=∠DAC
又∵∠FCB=∠FAB(同弧所对的圆周角相等),∠FAB=∠EAD
∴∠FBC=∠FCB
∴FB=FC;

(2)解:∵∠BAC=∠BFC,∠FAB=∠FCB=∠FBC
∴∠FCD=∠BFC+∠FBC=∠BAC+∠FAB=∠FAC
∵∠AFC=∠CFD,
∴△FAC∽△FCD
∴FA:FC=FC:FD
∴FB2=FC2=FA?FD=2×6=36,
∴FB=6.
解析分析:(1)欲证FB=FC,可证∠FBC=∠FCB.由A、C、B、F四点共圆可知∠FBC=∠CAD,又同弧所对的圆周角相等,则∠FCB=∠FAB,而∠FAB=∠EAD,则∠FCB=∠EAD,AD是△ABC外角∠EAC的平分线,得∠CAD=∠EAD,故∠FBC=∠FCB;
(2)由(1)知,求FB的长,即可以转化为求FC的长,联系已知条件:告诉FA与AD的长度,即可证△FAC∽△FCD.

点评:本题主要考查了圆周角定理及相似三角形的判定.在圆中,经常利用同弧或者等弧所对的圆周角相等来实现角度的等量转化.还要善于将已知条件与所要求的问题集中到两个三角形中,运用三角形相似来解决问题.
分享给朋友:
您可能感兴趣的文章:
随机阅读: