Lucene 评分机制

来源:转载


在检索文档时,lucene会计算文档与查询语句之间的相似程度,以打分的形式来表示,分值越高,相似度和匹配度越高。计算分值的公式如下:

score(q,d)   =   coord(q,d) ·  queryNorm(q) ·( tf(t in d) ·  idf(t)2 ·  boost(t.field in d) ·  lengthNorm(t.field in d) ) t in q 

其中,t:term,d:document,q:query。这个公式的一些含义如下表:

评分因子

描述

tf(t in d)

即词频,文档(d)中出现词(t)的频率,词在文档中出现的次数越多,得分越高。

idf(t)

即反文档频率,词在文档库中出现的频率的反转,一个词出现的越少,得分越高。

boost(t.field in d)

文档和域的加权,在索引期间设置。

lengthNorm(t.field in d)               

表示域中包含的项数量,更短的域(或更少的语汇单元)能获得更大的加权。

coord(q, d)

协调因子,基于文档中包含查询的项个数。举个例来说,查询“lucene”和"Apache",同时出现两个Term的肯定比只出现一个lucene或者Apache的分值高。

queryNorm(q)

多个查询器权重的平方和。


计算这个评分涉及到几个核心的类/接口:Similarity、Query、Weight、Scorer、Searcher,由它们或其子类来完成评分的计算。先来看下它们的类图:


搜索中,评分的过程:

  1. 创建一个查询对象 Query,传给 Searcher,具体来讲可能是 IndexSearcher。
  2. Searcher 根据 Query 创建一个对应的 Weight(是 Query 的内部特征表示),接着 Weight 会创建对应的 Scorer。
  3. Searcher 会创建 Hitcollector 并传到 Scorer,scorer 找到匹配的文档并计算评分,最后写到 Hitcollector 中。

Query、Weight、Scorer 三都关系十分密切,尤其是 Query 和 Weight。Weight 是计算查询权重和创建 Scorer 的。Query 为了可以重用把内部的特征抽象为 Weight,由子类去完成一些相关评分的计算。

任何 Searcher 依赖的状态都存储在 Weight 实现中,而不是在Query 中,这样可以重用 Query。

Weight 的生命周期(被使用):

  1. Weight 由顶层的 Query 创建。Query.createWeight(Searcher),创建的 Weight 给 Searcher 去使用。
  2. 当用 Similarity.queryNorm(float) 来计算查询标准化因子(query normalization)的时候,Weight.sumOfSquaredWeights() 会被调用。
  3. 查询标准化因子(query normalization)会传给 Weight.normalize(float)计算,这个时候权重(weighting)计算完成。
  4. 创建一个 Scorer。

自定义评分的计算

可以实现一个 Similarity 换掉默认的。它仅限于 Scorer、Weight 计算好的因子值再加工。要想对评分有更强的控制力,可以实现一套 Query、Weight、Scorer。

  • Query 是用户信息需要的抽象
  • Weight 是 Query 的内部特性表示的抽象
  • Scorer 抽象公用的计算评分功能,提供计算评分和解说(explanation)评分的能力。

Query 子类实现的方法:

  1. createWeight(Searcher searcher) -- Weight 是 Query 内部代表,所以每个 Query 都必实现一个 Weight,此方法就是生成一个Query对应的Weight对象。
  2. rewrite(IndexReader reader) -- 重写查询为原始的查询,原始的查询有:TermQuery,BooleanQuery……

Weight 接口方法:

  1. Weight#getQuery() -- 指出代表 Weight 的 Query。
  2. Weight#getValue() -- Query 的权重,例如:TermQuery.TermWeight 的 value = idf^2 * boost * queryNorm
  3. Weight#sumOfSquaredWeights() -- 各查询项的平方和,如,TermWeight 的 = (idf * boost)^2
  4. Weight#normalize(float) -- 决定查询标准化的因子,查询标准化值可以在不同 Query 比较 score
  5. Weight#scorer(IndexReader) -- 创建 Query 对应的评分器 Scorer,它的责任是给 Query 匹配到的文档评分。
  6. Weight#explain(IndexReader, int) -- 给指定的文档详细解说评分值是怎么得来了。

Scorer 子类实现的方法:

  1. Scorer#next() -- 预取匹配到的下一文档,有才返回 true。
  2. Scorer#doc() -- 返回当前匹配到的文档id,它必须 next() 调用后才有效。
  3. Scorer#score() -- 返回当前文档的评分,此值可以由应用程序以任何适当的方式给出,如 TermScorer 返回 tf * Weight.getValue() * fieldNorm
  4. Scorer#skipTo(int) -- 跳到大于或等于 int 的匹配文档上。很多情况下,在结果集中 skipTo 比较循环更加快速高效。
  5. Scorer#explain(int) -- 给出评分产生的细节。

要实现一套 Query、Weight、Scorer,最好还是看下 TermQuery、TermWeight、TermScorer。

当 Lucene 中没有想要的查询时(包括不同的评分细节),自定义Query 可能帮得上忙。





分享给朋友:
您可能感兴趣的文章:
随机阅读: